Khalak V. I., Ph. D., Senior Researcher.
https://orcid.org/0000-0002-4384-6394
State Institution "Institute of Grain Crops of the NAAS"
Rossokha V. I., Ph. D., Senior Researcher.
https://orcid.org/0000-0002-0978-9349
Institute of Animal Husbandry of the NAAS
Bordun O. M., Ph. D., Senior Researcher.
https://orcid.org/0000-0001-6144-771X
Institute of Agriculture of the Northeast of the NAAS
Chehorka P. T., https://orcid.org/0000-001-7780-9578
State Institution "Institute of Grain Crops of the NAAS"
DOI https://doi.org/10.32900/2312-8402-2023-129-233-244
Keywords: young pigs, breed, fattening and meat qualities, index, variability, correlation, cost of additional products.
Abstract
The article presents the results of the study of biochemical indicators of blood serum and their relationship with the fattening and meat qualities of young pigs of the large white breed, as well as the calculation of the level of correlations between the signs and the economic efficiency of their use in the conditions of the industrial complex.
Studies show that the biochemical indicators of blood serum of young pigs of the large white breed correspond to the physiological norm of clinically healthy animals, namely: the total protein content is 83.46 g/l, the urea content is 5.15 mmol/l, the urea nitrogen content is 10.14 mg %; the coefficient of variation of the specified quantitative features of the interior ranges from 4.85 to 14.99 %. By the age of reaching a live weight of 100 kg, the animals of the total sample (N=42) exceed the minimum requirements of the elite class by 6.57, the thickness of lard at the level of 6-7 thoracic vertebrae - 28.62, the length of the chilled carcass - 3.72 %.
Taking into account the intrabreed differentiation of animals according to the "intensity of formation" index, it was established that the young pigs of the II experimental group (∆t=0.715-1.011) prevailed over the peers of the same age I (∆t=1.076-1.356) in terms of average daily live weight gain, the age of reaching a live weight of 100 kg and fat thickness at the level of 6-7 thoracic vertebrae by an average of 3.61%. There was no significant difference between the groups in the thickness of lard at the level of 6-7 thoracic vertebrae, the length of the chilled carcass, the largest (front) and smallest (back) width of the bacon half of the carcass. The number of reliable connections between biochemical indicators of blood serum, fattening and meat qualities of young pigs of the controlled population is 33.33 %. The criterion for selecting highly productive animals of the main herd according to the absolute indicators of the fattening and meat qualities of their offspring is their compliance with the elite class, and according to the "intensity of formation" index - 0.715-1.011 points.
References
1. Voloshchuk, V. M., & Vasyliv A. P. (2013). Vidhodivel’ni, zabiyni ta m’yasni yakosti pidsvynkiv m’yasnykh porid [Fattening, slaughter and meat qualities of piglets of meat breeds] Svynarstvo, 62, 8-13. [in Ukrainian].
2. Barkar, Ye. V., & Dekhtyar, Yu. F. (2017). Vykorystannya knuriv-plidnykiv m'yasnykh porid dlya pokrashchennya pokaznykiv rostu ta vidhodivelnykh yakostey molodnyaku svyney [Use of breeding boars of meat breeds to improve growth indicators and fattening qualities of young pigs] Nauchnyy vzhlyad v budushchee, 6 (5), 16-20. [in Ukrainian].
3. Ban’kovska, I. B. (2016). Kompleksnyy vplyv faktoriv porody, stati ta zhyvoyi masy na pokaznyky m’yasnoyi produktyvnosti svyney [Complex influence of factors of breed, sex and live weight on indicators of meat productivity of pigs] Visnyk Sumsʹkoho natsionalnoho ahrarnoho universytetu. Seriya: Tvarynnytstvo, 7, 36-42. [in Ukrainian].
4. Voloshchuk, V. M., & Vasyliv, A. P. (2013). Vidhodivelni, zabiyni ta m’yasni yakosti pidsvynkiv m’yasnykh porid [Fattening, slaughter and meat qualities of piglets of meat breeds] Svynarstvo, 62, 8-13. [in Ukrainian].
5. Voloshchuk, O. V., & Hryshyna, L. P. (2017). Vplyv henotypu knuriv na vidhodivelni ta m’yasni oznaky otrymanoho vid nykh molodnyaku [Influence of wild boar genotype on fattening and meat characteristics of young animals obtained from them] Visnyk Sumskoho natsionalnoho ahrarnoho universytetu Seriya «Tvarynytstvo», 7 (33), 58-62. [in Ukrainian].
6. Lykhach, V., Lykhach, A., Duczmal, M., Janicki, M., Ogienko, M., Obozna, A., Kucher, O., & Faustov, R. (2020). Management of innovative technologies creation of bio-products: monograph. Opole-Kyiv, 222 p. 85 tab. Fig. 14 (ISBN 978-83-66567-16-0), Polska.
7. Chen, M., Wang, A. et al. (2004). Different allele frequencies of MC4R gene variants in Chinese pig breeds. Archiv fuer Tierzucht Dummerstorf. 47(5). 463-468.
8. Vashchenko, P. A. (2019). Prohnozuvannya pleminnoyi tsinnosti svyney na osnovi liniynykh modeley selektsiynykh indeksiv ta DNK-markeriv [Forecasting the breeding value of pigs based on linear models of selection indices and DNA markers]. (Doctor’s thesis) Mykolayiv National Agrarian University. [in Ukrainian].
9. Krasnoshchok, O. O. (2020). Formuvannya produktyvnosti svyney v zalezhnosti vid metodiv rozvedennya ta intensyvnosti rostu: [Formation of pig productivity depending on breeding methods and growth intensity]. (Extended abstract of candidate’s thesis) [in Ukrainian].
10. Fontanesi, L. et al. (2010). Association between cathepsin L (CTSL) and cathepsin S (CTSS) polymorphisms and meat production and carcass traits in Italian Large White pigs. Meat Science. Vol. 85. P. 331-338.
11. Kim, K. S., Larsen, N. J., & Rothschild, M. F. (2001). Rapid communication: linkage and physical mapping of the porcine melanocortin-4 receptor (MC4R) gene. Journal of Animal Science. 78. 3-16.
12. Khalak, V. I. & Ivanina, O. P. (2021). Fattening and Meat Qualities of the Different Genotypes Large White Breed Young Pigs for the Gene MC4R Melanocortin Receptor and their Relationship with Some Biochemical Parameters of Blood Serum. In Journal of Mountain Agriculture on the Balkans. 24, 6. 47–60.
13. Garmatyk, К., Susol, R., Broshkov, М., Danchuk, О. et al. (2020). Assessment of quality of modern commercial pork production. Food Science and Technology. 14, 2. 42-52.
14. Susol, R., Garmatyuk, K., Tatsiy, O. (2021). The Phenomenon of Sexual Dimorphism in the Context of Rearing Pigs Modern Commercial Breeds under Conditions of the South of Ukraine. Scientific Papers-Animal Science Series: Lucrări Ştiinţifice - Seria Zootehnie. 75. 307-312.
15. Vashchenko, P. A. (2019). Prohnozuvannya pleminnoyi tsinnosti svyney na osnovi liniynykh modeley selektsiynykh indeksiv ta DNK-markeriv [Forecasting the breeding value of pigs based on linear models of selection indices and DNA markers]. (Extended abstract of doctor’s thesis) Mykolayiv National Agrarian University. [in Ukrainian].
16. Siratskyy, Y. Z., Fedorovych, E. I., Hopka, B. P., Fedorovych, V. S., & Skotsyk, V. Ye. (2005). Inter’yer sil’s’kohospodars’kykh tvaryn [Interior of farm animals]. Kyiv: Vyshcha osvita [in Ukrainian].
17.Berezovskyy, M. D., & Khatko, I. V. (2005). Metodyky otsinky knuriv i svynomatok za yakistyu potomstva v umovakh pleminnykh zavodiv i pleminnykh reproduktoriv [Methods of evaluation of boars and sows according to the quality of the offspring in the conditions of breedingfarms and breeding breeders]. Suchasni metodyky doslidzhen u svynarstvi. Poltava, 32–37. [in Ukrainian].
18. Voloshchuk, V. M., Hetya, A. A., & Tserenyuk, O. M. (2017). Vyvchennya m’yasnoyi produktyvnosti svyney [Study of meat productivity of pigs] Metodolohiya ta orhanizatsiya naukovykh doslidzhen u tvarynnytstvi. 124-129. [in Ukrainian].
19. Svechin, Yu. K. (1985). Prognozirovaniye produktivnosti zhivotnykh v rannem vozraste. [Predicting the productivity of animals at an early age]. Vestnik sel'skokhozyaystvennoy nauki. 4, 103-108. [in Russian].
20. Hryban, V. H., Chumak, V. O., & Nemyrovskyy, V. I. (2001). Klinichna biokhimiya tvaryn. [Clinical biochemistry of animals] Dnipropetrovsʹk, [in Ukrainian].
21. Metodika opredeleniya ekonomicheskoy effektivnosti ispol'zovaniya v sel'skom khozyaystve rezul'tatov nauchno-issledovatel'skikh rabot, novoy tekhnologii, izobreteniy i ratsionalizatorskikh predlozheniy [Methodology for determining the economic efficiency of using the results of scientific research, new technology, inventions and rationalization proposals in agriculture]. M.: VAIIPI, 1983. 149 p. [in Russian].
22. Kovalenko, V. P., Khalak, V. I., Nezhlukchenko, T. I., & Papakina, N. S. (2010). Biometrychnyy analiz minlyvosti oznak silskohospodarskykh tvaryn i ptytsi. [Biometric analysis of the variability of traits of agricultural animals and poultry], Kherson: Oldi, 160. [in Ukrainian].
23. Sidorova A. V., Leonova N. V., Masich L. A., Skorobagatova N. V., Shamileva L. L. (2003). Praktikum po teorii statistiki. [Workshop on the theory of statistics]. Donetsk: Donetsk National University, 252 p. [in Russian].
Ushakova S. V., Candidate of Agricultural Sciences,
https://orcid.org/0000-0002-5779-1515
Levchenko M. V., Candidate of Agricultural Sciences,
https://orcid.org/0000-0001-7774-8955
Kherson State Agrarian and Economics University
DOI https://doi.org/10.32900/2312-8402-2023-129-220-232
Keywords: selection index, evaluation index, selection, crossbreeding, Landrace, Duroc, Pietren, Large White breed, pigs.
Abstract
An increase in the productivity of animals is associated with a general improvement of the population, which largely depends on the accuracy of the genotype assessment. The most accurate estimates can be obtained with the help of modern indices: evaluation and selection. At the same time, it is important to calculate the weight coefficients of the traits included in the selection index structure, separately for each herd (breed). Evaluation by indices allows selecting the best animals in the herd for further use. According to the results of the evaluation of the reproductive qualities of sows in crossbreeding using evaluation and selection indices, the superiority of large white breed sows covered with boars of the landrace breed was established, and the lowest among pigs of the combinations ♀P×♂D and ♀D×♂P. At the stage of studying the growth dynamics of pigs, we studied the patterns of individual development of animals in ontogenesis according to criteria that would characterize growth indicators and allow us to determine the type of their formation. Animals of the ♀D×♂P group outperformed their counterparts and other experimental groups. Animals of the ♀P×♂D and ♀D×♂P groups had the highest index of growth uniformity. At the same time, the control group and the combination ♀VB×♂L were inferior to them. The superiority of pigs in terms of growth intensity of the ♀D×♂P group shows the high energy of the formation of animals, they reached slaughter conditions faster under the same conditions of keeping and feeding compared to other groups. Animals of the combination ♀P×♂D were characterized by the most uniform growth at this stage. During the fattening period, the superiority of the offspring of the combination ♀D×♂P in terms of the index of fattening qualities was preserved. In order to select highly productive individuals, for further use in crossbreeding, we calculated selection indices for evaluating gilts by reproductive capacity, for evaluating the fattening and fattening and meat qualities of the offspring.
References
- Tatsii, O. (2021). Produktyvnist svynei porody p’ietren za vykorystannia riznykh metodiv rozvedennia [Productivity of Pietren pigs using different breeding methods]. Ahrarnyi visnyk Prychornomor`ia. Odesa, 100. 117-123 [in Ukrainian].
- Barkar, Ye. V., & Dekhtiar, Yu. F. (2019). Otsinka zakonomirnostei rostu ta vidhodivelnykh yakostei molodniaku svynei riznykh porodnykh poiednan [Assessment of growth patterns and fattening qualities of young pigs of different breed combinations]. Science, research, development. 15. 14-19 [in Ukrainian].
- Khalak, V. I., Hutyi, B. V., Ilchenko, M. O. (2022). Efektyvnist vykorystannia deiakykh polikomponentnykh matematychnykh modelei selektsiinykh indeksiv dlia otsinky molodniaku svynei za vidhodivelnymy i m’iasnymy yakostiamy [Effectiveness of using some multi-component mathematical models of selection indices for evaluation of young pigs for fattening and meat qualities]. Visnyk Poltavskoi derzhavnoi ahrarnoi akademii, 2(2), 197-204. https://doi.org/10.31210/visnyk2022.02.23 [in Ukrainian].
- Pelikh, V., Ushakova, S., & Pelikh, N. (2019). Index evaluation of pigs and determination of selection limits. Agricultural Science and Practice, 6(1). R. 67-74. https://doi.org/10.15407/agrisp6.01.067.
- Alfonso, L. (2019). Impact of Incorporating greenhouse gas intensitiesin selection indexes for sow productivity traits. Livestock science. 219. 57-61. https://doi.org/10.1016/j.livsci.2018.11.016
- Hetia, A. A.. (2009). Orhanizatsiia selektsiinoho protsesu v suchasnomu svynarstvi: Monohrafiia [Organization of the breeding process in modern pig breeding: Monograph]. Poltavskyi literator. Poltava, 192 [in Ukrainian].
- Kalynychenko, H., Oryshchenko, A. (2022). Rist i rozvytok porosiat zalezhno vid vyrivnianosti hnizd i rozpodilu za stattiu [Growth and development of piglets depending on nest alignment and distribution by sex]. Scientific Collection «InterConf». 388-392 [in Ukrainian].
- Khalak, V. I. (2015). Matematychni modeli vyznachennia vyrivnianosti hnizda svynomatok ta yikh zootekhnichna otsinka [Mathematical models for determining the alignment of the nest of sows and their zootechnical evaluation]. Bioresursy i pryrodokorystuvannia. 7(1-2). 103-109. [in Ukrainian].
- Khalak, V., & Susol, R. (2019). Zootekhnichna otsinka ta ekonomichna efektyvnist vykorystannia svynomatok velykoi biloi porody riznoi pleminnoi tsinnosti [Zootechnical assessment and economic efficiency of using large white breed sows of different breeding value]. Ahrarnyi visnyk Prychornomoria. 95. 90-97. [in Ukrainian].
- Khalak, V. I., Kozyr, V. S., & Hrabovska, O. S. (2022). Vidtvoriuvalni yakosti svynomatok riznoi vnutrishnoporodnoi dyferentsiatsii za deiakymy matematychnymy modeliamy ta ekonomichna efektyvnist yikh vykorystannia [Reproductive qualities of sows of different intrabreed differentiation according to some mathematical models and economic efficiency of their use]. Animal Biology. 22(2). 31. [in Ukrainian].
- Vashchenko, O. V. (2021). Efektyvnist vykorystannia svynei zarubizhnoi selektsii u skhreshchuvanni z vitchyznianymy porodamy i typamy [The effectiveness of the use of pigs of foreign selection in crossing with domestic breeds and types]. (Doctor’s thesis). Chubynske. 170. [in Ukrainian].
- Iovenko, V. M., & Hladii, I. A. (2021). Kharakterystyka rostu, rozvytku ta m’iasnykh yakostei molodniaku ovets riznykh henotypiv [Characteristics of growth, development and meat qualities of young sheep of different genotypes]. Visnyk ahrarnoi nauky Prychornomoria. 1 (109) 69-76. [in Ukrainian].
- Berghof, T. V., Poppe, M., & Mulder, H. A. (2019). Opportunities to improve resilience in animal breeding programs. Frontiers in genetics. 9. 692. https://doi.org/10.3389/fgene.2018.00692
- Nielsen, S. S, Denwood, M. J, Forkman, B. et. al. (2017). Selection of Meat Inspection. Data for an Animal Welfare Index in Cattle and Pigs in Denmark. Animals. (12). 94. https://doi.org/10.3390/ani7120094
- Stas, N. M., Ellis, M., Grohmann, N. S., et.al. (2017). Effect of swine sire line and selection index category on wean-to-finish growth performance and carcass characteristics. Journal of Animal Science. 95(2) 1. 14. https://doi.org/10.2527/asasmw.2017.030
- Juan P. Sánchez, Mohamed Ragab, ets.al. (2017). Genetic parameters and expected responses to selection for components of feed efficiency in a Duroc pig line. Genet Sel Evol. 49. 86. https://doi.org/10.1186/s12711-017-0362-x
- Song, H., Zhang, J, et.al. (2017). Genomic prediction for growth and reproduction traits in pig using an admixed reference population. Journal of Animal Science. 95. 3415. https://doi.org/10.2527/jas2017.1656.
- Usala, M., Macciotta, N. P. P., et al. (2015). Genetic parameters for tolerance to heat stress in crossbred swine carcass traits. Frontiers in Genetics. https://doi.org/10.3389/fgene.2020.612815
- Ali, B. M., Bastiaansen, J. W. M. et al. (2019). Response to a selection index including environmental costs and risk references of producers. Journal of animal science. 97(1). 156-171. https://doi.org/10.1093/jas/sky400
- Khalak V., Gutyj B., et al. (2020). .Development and reproductive qualities of sows of different breeds: innovative and traditional methods of assessment. Ukrainian Journal of Ecology. 10(2). 356–360. https://doi.org/10.15421/20 20 _ 109
- Yen, N., Tsai, H., et al. (2019). Study on the correlation of ranks among selection index, body type evaluation and foot hoof evaluation under swine purebred growth performance test. Journal of Taiwan Livestock Research, 52(4). 249-255.
- Alfonso, L. (2019). Impact of incorporating greenhouse gas emission intensities in selection indexes for sow productivity traits. Livestock science. 57-61. https://doi.org/10.1016/j.livsci.2018.11.016
- Cheng, J., Newcom, D. W., et al. (2018). Evaluation of current United States swine selection indexes and indexes designed for Chinese pork production. The Professional Animal Scientist, 34(5), 474-487. https://doi.org/10.15232/pas.2018-01731
- Tsereniuk, O. M., Shablia, V. P., & Akimov, O. V. (2016). Vykorystannia indeksu SIVIaS v selektsii svynei porody uels [The use of the SIVYAS index in the breeding of Welsh pigs]. Naukovo-tekhnichnyi biuleten Instytutu tvarynnytstva NAAN – Scientific and Technical Bulletin of the Institute of Animal Science of the National Academy of Agrarian Science of Ukraine. Kharkiv. 116. 171-180. [in Ukrainian].
- Lozada-Soto, E.A., Lourenco, D., et al. (2022). Genotyping and phenotyping strategies for genetic improvement of meat quality and carcass composition in swine. Genet Sel Evol. 54, 42 https://doi.org/10.1186/s12711-022-00736-4
- Willson, H. E., Rojas de Oliveira, H. et al. (2020). Estimation of Genetic Parameters for Pork Quality, Novel Carcass, Primal-Cut and Growth Traits in Duroc Pigs. Animals, 10(5). 779. http://dx.doi.org/10.3390/ani10050779
- Kodak, O., Nagy, I. (2019). Historical overview of the selection indices applied in pig breeding. Acta Agraria Kaposvariensis, 23(1). 22–31. https://doi.org/10.31914/aak.2294
- Rybalko, V. P., Berezovskyi, M. D., & Bohdanov, H. A. (2015). Suchasni metodyky doslidzhen u svynarstvi [Modern methods of research in pig breeding]. Poltava: IS UAAN. 228. [in Ukrainian].
- Berezovskyi, N. D., Pocherniaev, F. K., & Korotkov, V. A. Metodika modelirovanija indeksov dlja ispol'zovanija ih v selekcii svinej. Metody uluchshenija processov selekcii, razvedenija i vosproizvodstva svinej : metodicheskie ukazanija [A methodology for modeling indexes for use in pig breeding. Methods for improving the processes of selection, breeding and reproduction of pigs : guidelines]. Moskva. 1986. 3-14. [in Russian].
- Sposib vidboru svynomatok [Method of selection of sows]: pat. 100641 U Ukraina : MPK A 01 K 67/02 (2006.01); zaiavl. 13.10.2014; opublik. 10.08.2015, biul. 15. 3. [in Ukrainian].
- Svechyn, Yu. K. (1985). Prognozirovanie produktivnosti zhivotnyh v rannem vozraste [Predicting the productivity of animals at an early age]. Vestnyk selskokhoziaistvennoi nauky. 4. 103-108 [in Russian].
- Kovalenko, V. P., & Tsereniuk, O. M. (2010). Vplyv orhanizovanykh faktoriv na tochnist vyznachennia stresostiikosti u period «kryzy vidluchennia» [The influence of organized factors on the accuracy of determining stress resistance during the "weaning crisis"]. Tavriiskyi naukovyi visnyk. Kherson : Ailant. 68. 35-40. [in Ukrainian].
- Berezovskyi M. D., Hetia A. A., Vashchenko P. A. (2002). Avtomatyzovane modeliuvannia selektsiinykh indeksiv dlia otsinky svynei [Automated modeling of breeding indices for evaluation of pigs]. Visnyk Poltavskoi derzhavnoi ahrarnoi akademii. 4. 92-94. [in Ukrainian].
- Pelykh, V. H., & Ushakova, S. V. (2020). Vstanovlennia tsilovykh mezh vidboru svynei [Setting the target limits for the selection of pigs.]. Naukovo-tekhnichnyi biuleten Instytutu tvarynnytstva NAAN – Scientific and Technical Bulletin of the Institute of Animal Science of the National Academy of Agrarian Science of Ukraine. Kharkiv, 123. 129–137. https://doi.org/10.32900/2312-8402-2020-123-129-137 [in Ukrainian].
- Suslyna E. N., & Novykov, A. A. (2011). Metodycheskye aspekti povishenyia effektyvnosty hybrydyzatsyy v svynovodstve [Methodological aspects of increasing the efficiency of hybridization in pig breeding]. Svynovodstvo. 4. 12-15. [in Russian].
- Ogloblia, V., & Povod, N. (2020). Reproductive qualities of sowings of Irish origin in purebreed breeding and crossing in an industrial complex. Bulletin of Sumy National Agrarian University. The Series: Livestock. 1 (40). 103-107. https://doi.org/10.32845/bsnau.lvst.2020.1.15
- Matvieiev, M., & Getya, A. (2020). Perspektyvy zastosuvannia ekonomichnykh vahovykh koefitsiientiv dlia otsinky koriv za oznakamy molochnoi produktyvnosti [Prospects for the use of economic weighting factors for evaluating cows based on milk productivity]. Veterynariia, tekhnolohii tvarynnytstva ta pryrodokorystuvannia. 5. 91-95. https://doi.org/10.31890/vttp.2020.05.17 [In Ukrainian].
- Hietala, P., Wolfová, M., Wolf, J., et al. (2013). Economic values of production and functional traits, including residual feed intake, in Finnish milk production. Journal of Dairy Science. 97(2). 1092–1106. https://doi.org/10.3168/jds.2013-7085
Trishin O. K., Dr. sc. agr., Professor, Academician of NAAS,
https://orcid.org/0000-0002-3906-6547
Drozdov S. E., Ph. D., Senior Researcher.
https://orcid.org/0000-0003-1255-1937
Drozdova O. V. Researcher, https://orcid.org/0000-0002-0673-4641
Institute of Animal Science of NAAS
DOI https://doi.org/10.32900/2312-8402-2023-129-213-219
Keywords: replacement heifers, live weight, growth intensity, silage, sorghum, nutrients, chemical composition.
Abstract
The article experimentally substantiates the dynamics of changes in live weight and growth intensity of repair heifers of the Ukrainian Black-and-White dairy breed using silage from a mixture of corn and sorghum.
The research was conducted on three groups of 9-month-old Ukrainian Black-and-White dairy heifers with a live weight of 227 kg, 9 heads in each group. Heifers of the first (control) group received a diet consisting of corn silage. In the diets of the animals of the second and third (experimental) groups, respectively, 50% and 100% of this silage was replaced with silage made from the green mass of combined corn and sorghum crops.
The use of corn-sorghum silage in the diets of heifers slightly reduced the crude protein content in the diet, but it met the detailed feeding standards. The crude fiber content per 1 kg of dry matter of the diets was almost the same and amounted to 211, 215 and 219 g/kg of dry matter in the groups, respectively.
The replacement of silage in the rations of heifers of the experimental groups contributed to an increase in their average daily gain, compared to the control group, on the fourth and fifth month of the experiment, respectively, by 3.0 and 11.2 % and by 8.2 and 13.8 % (p≤0.05), respectively, which is probably due to a lower degree of rumen protein breakdown, resulting in a greater amount of it entering the small intestine, where it was actually absorbed.
According to the results of the research, taking into account the fact that the yield of green mass of combined crops of sorghum and corn is at least one and a half times higher than that of corn, it can be said that in order to ensure sustainable feed supply to the livestock industry in the face of climate change, as well as to increase feed production per unit of land area, while reducing their cost, it is advisable to use silage made from combined crops of sorghum and corn in the technology of growing heifers.
References
- Pomitun, I. A., Drozdov, S. Ie. (2018). Shliakhy zabezpechennia staloi zahotivli sylosovanykh kormiv v umovakh zmin klimatu [Ways to ensure sustainable silage harvesting in the face of climate change] Klimatychni zminy ta silske hospodarstvo. Vyklyky dlia ahrarnoi nauky i osvity [Climate change and agriculture. Challenges for agricultural science and education, Proceedings of the International Scientific and Practical Conference ] Kyiv [in Ukrainian]
- Forage Sorghum Variety Trials. Results from Texas and New Mexico. Published 2013 by the Sorghum Checkoff. www/sorghumcheckoff.com
- Rudenko, N. (2019). Pro perspektivi [About prospects]. Agroperspektiva [Agro perspective], 1-2 (219-220), 56-58 [in Ukrainian]
- Corriher, V. A., Hill, G. M., Bernard, J. K., Mullinix, B. G. (2010) Performance of Finishing Steers on Corn Silage or Forage Sorghum Silage with Corn Oil Supplementation. The Professional Animal Scientist, 26, 387–392.
- Dhiman, T. R., Bal, M. A.,. Wu, Z., Moreira, V. R., Shaver, R. D., Salter, L. D., Shinners К. J., Walgenbach, R. P. (2000) Influence of mechanical processing on utilization of corn silage by lactating dairy cows. J. Dairy Sc., 83, № 11, 2521–2528.
- John, K. Bernard Forage Sorghum for Dairy Cattle. Retrieved from : https://articles.extension.org/pages/71948/forage-sorghum-for-dairy-cattle
- Podkówka, Z., Podkówka, L (2011) Chemical composition and quality of sweet sorghum and maize silages. J. of Central European Agriculture, 12 (2), 294–303.
- Guyer, Paul Q., (1978) "G78-395 Feeding Corn and Sorghum Silages to Beef Cattle". Historical Materials from University of Nebraska - Lincoln Extension, 1978. Retrieved from : http://digitalcommons.unl.edu/extensionhist
- Bohdanova, H. O., & Kandyby, V. M. (2012). Normy i ratsiony povnotsinnoi hodivli vysokoproduktyvnoi velykoi rohatoi khudoby [Norms and rations of full feeding of high-performance cattle: guide-guide]. Kyiv : Ahrarna nauka [in Ukrainian].
- Cjupko, V. V., Pronina, V. V., Berus, M. V., Bublik, V. I., Vasilevskij, N. V. & Zlobina, G. S. et al (1989). Metodicheskie rekomendacii po normirovaniju jenergii v kormlenii krupnogo rogatogo skota [Guidelines for the regulation of energy in feeding cattle]. Har'kov [in Russian].
Tkachova Iryna, Doctor of Agricultural Sci., Senior Researcher,
https://orcid.org/0000-0002-4235-7257
Institute of animal science of NAAS of Ukraine
DOI https://doi.org/10.32900/2312-8402-2023-129-198-212
Keywords: horses, Ukrainian trotting breed group, breeding mares, genealogical combinations, lines, parent families, generation, selection traits.
Abstract
The object of research was an array of breeding mares of the newly created Ukrainian trotting breed group of horses, registered as of 01.01.2023 (n=194). 91.6% of all breeding mares were tested on racetracks with an average liveliness of 2.12.9 min. The quantitative and qualitative indicators of the investigated array, the genealogical structure, and the effectiveness of genealogical combinations were determined.
The liveliest mares were selected for breeding stock of the Dibrivskiy stud (average liveliness 2.08.2±0.86 min.). In prize-winning precocity, mares of Zaporizhskiy stud with a high probability (p<0.01) prevail over mares of other stud farms (average sprightliness at 2 years of age – 2.24.9±1.47 min.). The highest record liveliness at an older age in mares of the Dibrivskiy stud (2.05.4±0.64 min.). Of all the evaluated mares of the newly created breed group, 12% are in the liveliness class of 2.05 min. and more lively and almost half (48.8%) to class 2.10 min. and livelier. The majority of mares belong to the liveliness classes of 2.05.1-2.10.0 min. (36.8%), 2.10.1-2.15.0 min. (19.7%), 2.00.1-2.05 min. (12,0 %), 2.15.1-2.20 min (9.4%). In the breeding stock of the Dibrivskiy stud, 10 mares (32.3%) are in the liveliness class of 2.05 min. and more lively, 21 mares (67.7%) are to liveliness class 2.10 min and livelier. In general, it can be stated that liveliness is a fairly consolidated feature (Cv=7.28) of the reproductive composition of the newly formed trotting breed group.
According to the results of the assessment of body measurements, it was established that the mares of the Dibrivskiy stud prevail in terms of height at the withers and length of the body (p<0.05), so it can be stated that the selection strategy of this farm is aimed at the right movement of combining high prize productivity with exterior indicators. Mares of all stud farms practically do not differ in chest girth and wrist. the highest score for origin, type, exterior and prize performance was given to mares of the Dibrivskiy Stud (p<0.05). The mares of the Lymarivskiy stud farm received the highest marks for their measured performance.
The analysis of the genealogical structure determined the origin of breeding stallions from 6 and reproductive mares from 9 genealogical lines. The Speedy Crown line is the most developed in terms of stallions and mares (46.7 and 34.3%, respectively). The highest record liveliness for the distance of 1600 m (at the level of liveliness class 2.10 min. and livelier) belongs to mares of lines: Hut Moon (125.5±1.55 s) and Arnie Almahurs (127.6±1.37 s). The most precocious mares of the lines: Low Hanover (142.7±3.17 s), Worthy Boy (143.1±1.53 s), Hut Moon (144.5±3.75 s) and Speedy Crown (146.1±1.71 s). The studied array of mares is divided into 25 maternal families. The results of the analysis show that Ruta's mare of line is most effectively combined with genealogical lines.
References
1. Aleshchenko, O. O., Rossokha, V. I., & Tur, H. M. (2010). Henetychna struktura ukrainskoi populiatsii rysakiv za polimorfnymy systemamy bilkiv krovi [Genetic structure of the Ukrainian population of trotters according to polymorphic systems of blood proteins]. Naukovo-tekhnichnyi biuleten Instytutu tvarynnytstva NAAN– Scientific and Technical Bulletin of the Institute of Animal Science of the National Academy of Agrarian Science of Ukraine. Kharkiv, 103. 105-112 [in Ukranian].
2. Baranovskyi, D. I., Brahinets, O. M., & Khokhlov, A. M. (2017). Biometriia v prohramnomu seredovyshchi MS Excel :navchalnyi posibnyk. [Biometrics in MS Excel software]. Kharkiv: SPD FO Brovin O. V. 90 [in Ukranian].
3. Burenko, A. V. (2019). Efektyvnist pidboriv batkivskykh par pry otrymanni orlovskykh rysakiv klasu 2.05 i zhvavishe za kompleksom selektsiinykh oznak [The effectiveness of selection of parent pairs in obtaining Orlov’s trotters of class 2.05 and more lively according to a complex of selection traits]. Naukovo-tekhnichnyi biuleten Instytutu tvarynnytstva NAAN – Scientific and Technical Bulletin of the Institute of Animal Science of the National Academy of Agrarian Science of Ukraine. Kharkiv, 122. 60-73 [in Ukranian].
4. Gorniak, W. (2020). Impact of the individual characteristics of French trotters on their racing performance. Turkish J. of Vet. and Animal Sci. 44. 110-117.
5. Tkachova, I. V., Korniienko, O. O., Rossokha, V. I., Tur, H. M., & Aleshchenko, O. O. (2015). Materialy do aprobatsii ukrainskoi rysystoi porodnoi hrupy [Materials for approval of the Ukrainian trotting breed group] Zahalna redaktsiia Tkachovoi I. V., Volkova D. A. Kharkiv, 132 [in Ukranian].
6. Tkachenko, O. O., Tkachova, I. V., Hdanska, K. V., Rossokha, V. I., Tur, H. M., & Aleshchenko, O. A. (2015). Prohrama selektsii konei rosiiskoi rysystoi porody (ukrainskoi rysystoi porodnoi hrupy) do 2020 roku [Breeding program for horses of the Ukrainian trotters until 2020], za red. N. V. Kudriavskoi, I. V. Tkachovoi. Kharkiv : Instytut tvarynnytstva NAAN, 92 [in Ukranian].
7. Tkachova, I. V. (2017). Zberezhennia ta udoskonalennia zavodskykh porid konei v umovakh obmezhenoho henofondu [Preservation and improvement of factory breeds of horses in conditions of a limited gene pool]. Naukovo-tekhnichnyi biuleten Instytutu tvarynnytstva NAAN – Scientific and Technical Bulletin of the Institute of Animal Science of the National Academy of Agrarian Science of Ukraine. Kharkiv, 118. 180-191 [in Ukranian].
8. Tkachova, I. V., & Tkachenko, O. O. (2017). Ukrainska rysysta porodna hrupa konei [Ukrainian trotting breed group of horses]. Ahrarna nauka – vyrobnytstvu. Kyiv: Ahrarna nauka, 3 (81). 21 [in Ukranian].
9. Tkachova, I. V., Frolova H. O., & Platonova, N. P. (2022). Efektyvnist modelei pidboru za henealohichnymy hrupamy pry otrymanni pleminnykh kobyl v orlovskii rysystii porodi konei ukrainskoi populiatsii [The effectiveness of selection models by genealogical groups in obtaining breeding mares in the Orlov’s trotters of the Ukrainian population]. Naukovo-tekhnichnyi biuleten Instytutu tvarynnytstva NAAN – Scientific and Technical Bulletin of the Institute of Animal Science of the National Academy of Agrarian Science of Ukraine. Kharkiv, 128. 188-197. https://doi.org/10.32900/2312-8402-2022-128-188-197 [in Ukranian].
10. Thiruvenkadan, A. K., Kandasamy, N., & Panneerselvam, S. (2009). Inheritance of racing performance of trotter horses: an overview. Livest. Sci. 124. 163-181. https://doi.org/10.1016/j.livsci.2009.01.010.
Sushko Alexei, Ph.D., https://orcid.org/0000-0003-3552-064X
Institute of Animal Science of NAAS
Zhegunov G., Doctor of Biological Sci., Professor,
https//orcid.org/0000-0003-0104-7890
State University of Biotechnology.
Savelieva M., Ph.D., https//orcid.org/0000-0003-2221-933Х
Yeletska L., Researcher, https//orcid.org/0000-0001-6029-0183Х
Martinyk I., Ph.D., https//orcid.org/0000-0002-3675-124X
Institute of Animal Science of NAAS
DOI https://doi.org/10.32900/2312-8402-2023-129-182-197
Keywords: artificial insemination, environments, semen, animals, bulls, stallions, cryoprotectants, freezing.
Abstract
A retrospective review of domestic and foreign sources of literature is presented, as well as data of published own research on cryopreservation of animal sperm. The main historical stages of the creation of protective environments for deep freezing of sperm are given.
In the 30s of the last century, a phenomenon characterized by the death of spermatozoa upon sharp cooling in the range of positive temperatures was discovered. It is called temperature shock of sperm. To prevent it, it is proposed to add substances containing phospholipids to the composition of diluents. Such environments can contain both simple components - native chicken egg yolk or milk, and high-tech - lipoproteins, isolated phospholipids of various origins. To stabilize protein-lipid complexes of plasma membranes and acrosomes of sperm during the cooling process, carbohydrates are added to the diluents. Sugars are components of energy supply for sperm and, along with salts, they are the main osmotic regulators. A combination of two or three carbohydrates in the medium was traditionally considered necessary. However, the Kharkiv school of reproductive specialists has proven the possibility of creating effective protective environments using only one sugar - sucrose or lactose - based on considerable practical experience.
The effectiveness of germ cell freezing is shown depending on the cryoprotectants used. Glycerin is the first known endocellular cryoprotectant, which is still unsurpassed in sperm cryopreservation. Our own experimental data on the effect of combinations of glycerol with substances from the amide group on the main biological indicators of sperm after deconservation are presented. Cryoprotectants dimethylacetamide (DMAC) and dimethylformamide (DMF) were tested in own experiments on stallion semen. The experiments studied the effect of different concentrations of the above-mentioned penetrating cryoprotectants both on the main physiological characteristics of stallion sperm (motility, survival), and on the degree of damage to the membrane apparatus of sperm. The effectiveness of certain combinations of these substances has been proven.
Methods of preventing the negative impact of oxygen and the development of lipid peroxidation processes in sperm during cryopreservation are presented. The concept of using additional hormonal components in diluents, in particular prostaglandin F2a, is revealed. The materials related to the effect on the quality of reproductive cells of healing preparations are displayed.
References
1. Smirnov, I. V., Milovanov, V. K., & Sokolovskaya, I. I. Diplom na otkrytie № 103 «Eksperimentalno ustanovleno neizvestnoe ranee svojstvo zhivchikov mlekopitayushih sohranyat biologicheskuyu polnocennost i geneticheskuyu informaciyu posle zamora-zhivaniya pri temperature nizhe -20oS, naprimer, v szhizhennyh gazah s polucheniem normalnogo potomstva ot zamorozhenogo semeni» s prioritetom ot iyunya 1947 goda. [Diploma for the discovery No. 103 “The previously unknown property of mammalian gums to maintain biological usefulness and genetic information after freezing at temper-atures below -20 °C, for example, in liquefied gases with obtaining normal offspring from frozen semen ”with a priority of June 1947]
2. Milovanov, V. K. (1936). Iskusstvennoe osemenenie selskohozyajstvennyh zhivotnyh [Artificial insemination of agricultural animals] Moscow : Selhozgiz [in Russian].
3. Milovanov, V. K., & Sokolovskaya, I. I. (1960). Teoriya holodovogo udara zhivchikov mlekopitayushih [The theory of cold shock in mammals]. Zhivotnovodstvo, 1, 44-45 [in Russian].
4. Milovanov, V. K., & Selivanova, O. A. (1932). Razbaviteli dlya spermy selskohozyajstvennyh zhivotnyh [Diluents for sperm of farm animals]. Problemy zhivotnovodstva, 2 [in Russian].
5. Ostashko, F. I. (1968). Glubokoe zamorazhivanie i dlitelnoe hranenie spermy proizvoditelej. [Deep freezing and long-term storage of sperm producers] Kiev: Urozhaj, [in Russian].
6. Belous, A. M., Bondarenko, T. P., & Bondarenko, V. A. (1979). Molekulyarnye mehanizmy kriopovrezhdeniya membrannyh struktur [Molecular mechanisms of cryodamage of membrane structures]. Kriobiologiya i kriomedicina - Cryobiology and cryomedicine. 5, 3-13 [in Russian].
7. Pushkar, N. S., Belous, A. M., & Cvetkov, C. D. (1984). Teoriya i praktika kriogennogo i subliminacionnogo kriokonservirovaniya [Theory and practice of cryogenic and sublimation cryopreservation]. Kyiv : Nauk. Dumka [in Russian].
8. Belous, A. M., & Bondarenko, V. A. (1982). Strukturnye izmeneniya biologicheskih membran pri ohlazhdenii [Structural changes in biological membranes during cooling]. Kyiv : Nauk. Dumka [in Russian].
9. Bugrov, A. D. (2015). Kriokonservaciya i kriozashita spermiev bykov pri glubokom za-morazhivanii [Cryopreservation and cryoprotection of bull sperm at deep freezing] Institut zhivotnovodstva NAAN. Kharkiv: Institute of Animal Science of NAAS [in Russian].
10. Kurbatov, A. D., Kurbatov, A. D., Platov, E. M., & Korban, N. V. (1988). Kriokonservaciyaspermyselskohozyajstvennyhzhivotnyh [Cryopreservation of sperm of agricultural animals] Leningrad : Agropromizdat [in Russian].
11. Pavlenko, M. P. (2001). Novi alternativni antishokovi komponenti roslinnoyi prirodi i yihnij vpliv na kriorezistentnist ta biologichni pokazniki statevih klitin bugayiv pri kriokonservaciyi u bezzhovtkovih seredovishah [New alternative anti-shock components of the dewy nature and their influence on cryoresistance and biological indications of state bugs during cryopreservation in bezzhovtkovy mediums ] Rozvedennya i genetika tvarin. Kyiv: Agrarna nauka 34, 24-30 [in Ukrainian].
12. Sushko, A. B., Pavlenko, B. M., Savelyeva, M. S., & Kindya, V. I. (2013). Protektivnoe dejstvie sred dlya razbavleniya spermy bykov, izgotovlennyh s primeneniem alternativnyh antishokovyh komponentov [Protective effect of media for diluting bull semen, made using alternative anti-shock components] Naukovo-tekhnichnyi biuleten Instytutu tvarynnytstva NAAN– Scientific and Technical Bulletin of the Institute of Animal Science of the National Academy of Agrarian Science of Ukraine. Harkiv, 109, 205-211 [in Russian].
13. Chelucci, S., Pasciu, V., Succu. S., Addis, D., Leoni, G. G., Manca, M. E., Naitana, S., & Berlinguer, F. (2014). Soybean lecithin-based extender preserves spermatozoa membrane integrity and fertilizing potential during goat semen cryopreservation. Theriogenology, 13, pii: S0093-691X(14) article in press.
14. Mutalik, S., Salian, S. R., & Adiga, S. K. (2014). Liposome encapsulated soy lecithin and cholesterol can efficiently replace chicken egg yolk in human semen cryopreservation medium. Syst. Biol. Reprod. Med., 60 (3), 183-8.
15. Sharafi, M., Zhandi, M., & Akbari, S. A. (2014). Supplementation of soybean lecithin-based semen extender by antioxidants: complementary flowcytometric study on post-thawed ram spermatozoa. Cell Tissue Bank.
16. Najafi, A., Najafi, M., Zanganeh, Z., & Adeldust, H. (2014). Cryopreservation of ram semen in extenders containing soybean lecithin as cryoprotectant and hyaluronic acid as antioxidant. Reprod Domest Anim., 49 (6), 934-40.
17. Motlagh, M. K., Sharafi, M., & Zhandi, M. (2014). Antioxidant effect of rosemary (Rosmarinus officinalis L.) extract in soybean lecithin-based semen extender following freeze-thawing process of ram sperm. Cryobiology, 69(2), 217-22.
18.Najafi, A., Kia, H. D., & Adeldust, H. (2014). Different concentrations of cysteamine and ergothioneine improve microscopic and oxidative parameters in ram semen frozen with a soybean lecithin extender. Cryobiology, 69 (1): 68-73.
19. Anzar, M., Rajapaksha, K., & Boswall, L. (2019). Egg yolk-free cryopreservation ofbullsemen. Plos one. https://doi.org/10.1371/journal.pone.0223977
20. Lopatko M., & Tyupina L. (1971). Zamorazhivanie spermy byka bez glicerina [Freezing of bull semen without glycerin]. Molochnoe i mjasnoe skotovodstvo - Dairy and beef cattle breeding, 4, 24.
21.Storey B. T., Noiles E. E., & Thompson K. A. (1998). Comparison of glycerol, other polyols, trehalose, and raffinose to provide a defined cryoprotectant medium for mouse sperm cryopreservation. Cryobiology. Vol. 37, N 1. Р. 46–58.
22. Sztein J. M., Noble K., Farley J. S., & Mobraaten, L. E. (2001). Comparison of permeating and nonpermeating cryoprotectants for mouse sperm cryopreservation . Cryobiology. Vol. 41, N1. P. 28–39.
- Kurbatov, A. D., Platov, E. M., & Korban, N. V. (1988). Kriokonservaciya spermy selskohozyajstvennyh zhivotny [Cryopreservation of sperm of agricultural animals] Leningrad : Agropromizdat [in Russian].
24. Ostashko, F. I. , Rudenko, Ye. V., Sushko, O. B., Savelyeva, M. S., & Pavlenko, B. M. (2011). Nacionalna tehnologiya kriokonservaciyi ta vikoristannya spermi pleminnih plidnikiv u sistemi krupnomasshtabnoyi selekciyi (Harkivska tehnologiya aseptichnogo oderzhannya kriokonservaciyi spermi bugayiv v oblicovanih granulah) [National technology of cryopreservation and vicarization of sperm of pedigree pups in the system of large-scale selection (Kharkiv technology of aseptic preservation of cryopreservation of sperm of bugs in coated granules)]. Min. APU, Nacionalna akademiya agrarnih nauk Ukrayini, IT NAAN, Kharkiv [Ukrainian].
25. Ostashko, F. I. (1995). Biotehnologiya vosproizvedeniya krupnogo rogatogo skota [Biotechnology of cattle reproduction] Kiyv : Agrarna nauka [in Russian].
26. Platov, E. M., & Volkov, A. S. (1978). Tehnologiya zamorazhivaniya spermy barana [Ram sperm freezing technology]. Ovcevodstvo, 9, 35-36 [in Russian].
27. Platov, E. M., Malinovskij, A. M., & Leonteva, L. I. (1981). Itogi i perspektivy zamorazhivaniya spermy [Results and prospects of sperm freezing]. Ovcevodstvo, 9, 34-36 [in Russian].
28. Poldge, C., Smith, A., & Parkes, A. (1949). Revival of spermatozoa after vitrification and dehydration at low temperatures. Nature, London, 164, 4219, 666.
29. Bernshtejn, A. D., & Petropavlovskij, V. V. (1937). Vliyanie neelektrolitov na perezhivanie spermatozoidov [Influence of non-electrolytes on survival of spermatozoa] Byulleten eksperimentalnoj biologii i mediciny: soobshenij 111, T.3, 1, 21-25 [in Russian].
30. Maksimov, N. A. (1913). O vymerzanii i holodostojkosti rastenij. Eksperimentalnye i teoreticheskie issledovaniya. [About freezing and cold resistance of plants. Experimental and theoretical studies] Izvestija Sankt-Peterburgskogo lesnogo instituta. [in Russian].
31. Belous, A. M., Shrago, M. I., & Pushkar, N. S. (1979). Kriokonservanty [Cryopreservatives]. Kyiv: Nauk. Dumka [in Russian].
32. Buyukleblebici, S., Barbaros, P. T., Numan, M. B., Ayse, E., Sarıozkan, S., Tasdemir, U., & Unluendirlik, B. (2014). Cryopreservation of bull sperm: Effects of extender supplemented with different cryoprotectants and antioxidants on sperm motility, antioxidant capacity and fertility results. Reprod Science Anim. 30. https://doi.org/10.1016/j.anireprosci.2014.09.006
33. Belous, A. M., Hryshchenko, V. Y., & Parashchuk, Yu. S. (1986). Kryokonservatsyia reproduktyvnykh kletok [Cryopreservation of reproductive cells] Kyiv : Nauk.dumka [in Russian].
34. Bugrov, A. D. (1980). Izuchenie kriozashitnyh svojstv ryada soedinenij pri zamorazhivanii spermy bykov [Study of the cryoprotective properties of a number of compounds during freezing of bull sperm]. Nauchno-tehnicheskijbyulletenNIIzhivotnovodstvaLesostepi iPolesyaUSSR. 28 [in Russian].
35. Bugrov, A. D., & Ostashko, F. I. (1980). Rol nekotoryh krioprotektorov pri zamorazhivanii spermy [The role of some cryoprotectors in sperm freezing] Kriobiologiyaikriomedicina, 6, 5-9 [in Russian].
36. Bugrov, A. D. (2015). Kriokonservaciya i kriozashita spermiev bykov pri glubokom zamorazhivanii [Cryopreservation and cryoprotection of bull sperm during deep freezing] Izd.2-e, dopolnennoeipererabotannoe - Kharkiv: InstitutzhivotnovodstvaNAAN[in Russian].
37. Linnik, T. P. (1998). Amidy alifaticheskih kislot – effektivnye krioprotektory. I. Fiziko-himicheskie svojstva soedinenij ryada amidov [Physico-chemical properties of compounds of a number of amides] Problemy kriobiologii. 3, 21–28 [in Russian].
38. Linnik T. P. (1999). Amidy alifaticheskih kislot – effektivnye krioprotektory. II. Kriozashitnye svojstva soedinenij ryada amidov [Amides of aliphatic acids are effective cryoprotectors. II. Cryoprotective properties of compounds of a number of amides] Problemy kriobiologii. 2, 22–32 [in Russian].
39. Sushko, O. B., Smorong, Z., Bohenek, M., & Mishenko, A. G. (2010). Ushkodzhennya membran spermiyiv zherebcya pri riznih metodah kriokonservaciyi [Damage to stallion sperm membranes during various cryopreservation methods]. Naukovo-tekhnichnyi biuleten Instytutu tvarynnytstva NAAN – Scientific and Technical Bulletin of the Institute of Animal Science of the National Academy of Agrarian Science of Ukraine. Kharkiv, 102. 147-152[in Ukrainian].
40. Sahackij, N. I., Tereshenko, A. V., & Artemenko, A. B. (1988). Razrabotka zashitnoj sredy dlya konservacii spermy petuhov [Development of a protective environment for the preservation of rooster sperm] Naukovo-tekhnichnyi biuleten UkrNIIP. Harkov 24, 29–32 [in Russian].
41. Lynnyk, T. P., Tereshchenko, A. V., & Artemenko, A. B. (1996). Vlyianye belkovykh dobavok k kryozashchytnoi srede na sokhrannost spermyev petukhov pry kryokonservyrovanyy [The influence of protein additives to the cryoprotective medium on the safety of rooster sperm when cryopreserved] Problemy kriobiologii. 2, 35–39 [in Russian].
42. Ostashko, F. Y. (1978). Hlubokoe zamorazhyvanye y dlytelnoe khranenye spermy proyzvodytelei [Deep freezing and long-term storage of sperm of producers] Kyev: Urozhai [in Russian].
43. Aitken, R. J. (1995). Free radicals, lipid peroxidation and sperm function. Reprod Fertil Dev. 7, 659–68.
44. Martyniuk, I. M. (2011). Strukturno-funktsionalnyi stan spermatozoidiv pivnia ta indyka pid diieiu krioprotektoriv i nyzkykh temperatur [The structural and functional state of rooster and turkey spermatozoa under the influence of cryoprotectants and low temperatures]. (Extended abstract of candidate’s thesis) Kharkiv: Institute of Animal Science of NAAS [in Ukrainian].
45. Roujeinikova, A., Sedelnikova, S., & Boer, de G. J. (1999). Inhibitor binding studies on enoyl reductase reveal conformation changes related to substrate recognition Boil Chem. 247, 43, 811-817.
46. Borges, J. C., Silva, M. R. & Rodrigues, L. (2008). Effect of antioxidant in the cryopreserved bovine semen evaluated by artificial insemination and in vitro fertilization. Reprodaction in Domestic Animals, Book of Abstracts of the 16 - th International Congress on Animal Reproduction. Budapest, Hungary, 43, supplement 3, 231-232.
47. Podufalyi, V. V., Cherkashyna, Y. V., & Kuchkov, Y. N. (2008). Protsessy perekysnoho okyslenyia lypydov v aktyvno-podvyzhnoi fraktsyy spermyev cheloveka, vydelennoi do y posle kryokonservyrovanyia. [Processes of lipid peroxidation in the active-motile fraction of human sperm isolated before and after cryopreservation]. Problemykryobyolohyy. Kharkov, 18, 4, 520-523 [in Russian].
48. Kava, S. Y., Yaremchuk, I. M, & Ostapiv, D. D. (2010). Lipoproteinyspermybuhaiazadodavanniaantyoksydantivurozridzhuvach [Sperm lipoproteins due to the addition of antioxidants to the diluent]. Lviv, 12, 1, 76-81[in Ukrainian].
49. Savelieva M. S. (2011). Kontsentratsiia produktiv perekysnoho okyslennia lipidiv pry pidhotovtsi ta pislia kriokonservuvannia spermy buhaiv-plidnykiv. [Concentration of lipid peroxidation products during preparation and after cryopreservation of semen of breeding bulls] Nauk. visn. Luhanskoho natsionalnoho ahrarnoho universytetu. Luhansk: „Elton-2”,31, 157 – 160 [in Ukrainian].
50. Savelieva M. S. (2013). Polipshennia yakisnykh pokaznykiv spermy pleminnykh buhaiv u protsesi zahotivli, kriokonservuvannia i shtuchnoho osimeninnia [Improvement of quality indicators of semen of pedigree bulls in the process of procurement, cryopreservation and artificial insemination] (Extended abstract of candidate’s thesis) Kharkiv: Institute of Animal Science of NAAS [in Ukrainian].
51. Edqvist, S., Einarsson, S. & Gustafsson, B. (1975). Effect of prostaglandin F2α on sperm transport in the reproductive tract of the ewe. Acta.Vet.Scand.16, 149-151
52. Gustafsson, B., Edqvist, S., Einarsson, S. & Linge, F. (1975) The fertility of deep frozen ram semen supplemented with PDF2α.. Acta.Vet. Scand.16, 468-470.
53. Dimov, V., & Stefanov, G. (1975). Studies on the content of prostaglandin and fertility of sheep semen. Proc Int. Conf. Prostaglandins. Florence, Italy, 108
54. Convey, R. V., Beck, T.W., & Neitzel, R (1980) Release of HL following, intrauterine administration gonadotropinreleasing hormone. Can. J. Ahim, Sci.60, 1023-1026.
55. Sushko, O. B. (2018). Spivvidnoshennia riznykh form ovarialnykh dysfunktsii u koriv vysokoproduktyvnykh molochnykh stad [Ratio of various forms of ovarian dysfunctions in cows of high-yielding dairy herds] Tavriiskyi naukovyi visnyk. Naukovyi zhurnal. Kherson, 99. 203-209.
56. Lysyn, V. Y., & Sushko, A. B. (2013). Rezultaty prymenenyia surfahona v praktyke yskusstvennoho osemenenyia krolykov [The results of using surfagon in the practice of artificial insemination of rabbits]. Naukovo-tekhnichnyi biuleten Instytutu tvarynnytstva NAAN – Scientific and Technical Bulletin of the Institute of Animal Science of the National Academy of Agrarian Science of Ukraine. Kharkiv, 109. 174-181[in Russian].
57. Buhrov, O. D., Tykhona, H. S., & Skliarov, P. M. (1997). Vykorystannia kompleksu antybiotykiv hentamitsynu z ampitsylinom dlia dekontaminatsii embrionoiv ta spermy buhaiv [Use of a complex of antibiotics gentamicin with ampicillin for decontamination of embryos and sperm of bulls] Zb. materialiv mizhnar. nauk. prakt. konf. Lviv. akad.vet.medytsyny im. S.Z. Hzhytskoho, 121-122 [in Ukrainian].
58. Buhrov, O. D., & Skliarov, P. M. (1998) Dodavannia hentamitsynu ta ampitsylinu v seredovyshcha dlia zamorozhuvannia spermy buhaiv. [Addition of gentamicin and ampicillin to bull sperm freezing medium]: Naukovo- tekhnichnyi biuleten Instytutu tvarynntsva, Kharkiv 75, 53-57 [in Ukrainian].
59. Buhrov, O. D., & Skliarov, P. M. (1998). Dodavannia antybiotykiv v spermu buhaiv [Addition of antibiotics to the semen of bulls]. Problemy zooinzhenerii ta veterynarnoi medytsyny. Kharkiv, 27, 52-54 [in Ukrainian].
60. Skliarov, P. N. (1997). Yspolzovanye kompleksa antybyotykov hentamytsyna y ampytsyllyna dlia sanatsyy spermy i embryonov [The use of a complex of antibiotics gentamicin and ampicillin for the sanitation of sperm and embryos] Vykorystannia transplantatsii embrioniv v selektsii vitvorennia silskohospodarskykh tvaryn, Askaniia-Nova: materily mizhnar.nauk.-vyrob. konf.,78-79 [in Russian].
61. Skliarov, P. M. (1998). Vplyv kompleksu antybiotykiv hentamitsyn+ ampitsylin na perezhyvaiemist i zaplidniuvalnu zdatnist buhaiv-plidnykiv [The influence of the complex of antibiotics gentamicin + ampicillin on the survivability and fertilizing ability of breeder bulls] Problemy zooinzhenerii ta veterynarii medytsyny. Kharkiv, 36-38 [in Ukrainian].
Sediuk I., PhD, https://orcid.org/0000-0003-1765-2868
Zolotarov A., PhD, Researcher, https://orcid.org/0000-0002-5532-3988
Prusova G., PhD, https://orcid.org/0000-0002-2604-5720
Podobed L., Doctor of Agricultural Sci., Professor,
https://orcid.org/0000-0003-4903-4597
Kravchenko Yuriy, PhD, Senior Researcher,
https://orcid.org/0000-0002-7953-582X
Yeletska L., Researcher, https//orcid.org/0000-0001-6029-0183
Institute of Animal Science of NAAS
Zolotarova S., PhD, docent, https://orcid.org/0000-0001-7275-5603
State Biotechnology University
DOI https://doi.org/10.32900/2312-8402-2023-129-172-181
Keywords: protected protein, cows, milk productivity, protein supplement, heat stress.
Abstract
The article presents the results of research on the reduction of the negative influence of heat stress on the milk productivity of cows in the second half of lactation due to the use of a protein feed additive with protected protein and starch.
One of the factors of effective milk production with intensive management of the industry is the creation of comfortable conditions for keeping animals on the farm. Highly productive cows are quite demanding on the conditions of maintenance and microclimate.
The study of the productive action of the complex drug Bypass protein + passable starch under the influence of temperature stress was carried out by us for the first time. The influence of the thermal factor of the environment on the productivity of cows is well described in the literature and the mechanisms of such an effect are described. The main consequence of the reaction of cows to temperature stress is a decrease in the consumption of dry matter of feed. This factor becomes the main factor in reducing productivity due to energy and protein deficiency.
The same reaction was observed in our studies, both in the control and experimental groups. But we confirmed for the first time that the actions of compensation of temperature stress can be controlled due to the configurations of protein and energy entering the body by bypassing the scar.
In our research, it has been proven for the first time that even in the conditions of reduced feed consumption, this way of providing cows with protein and energy is a reliable way of managing the productivity of cows and stabilizing their homeostasis during the period of temperature conditions that are dangerous for the existence of animals.
It was established that the decrease in daily milk yield by 1.3 kg is a consequence of the negative influence of the temperature factor, when the daily air temperature in the summer period was at the level of +24.5-36.4 oС. The proof of this is the decrease in the rate of decline in the level of milk productivity of the cows of the experimental groups in August, when the average daily air temperature dropped to +24-26 °C.
Modernization of the feeding ration of high-yielding cows by increasing the content of non-degradable protein in the rumen to the norm during temperature stress contributed to better adaptation of animals to productivity and quality indicators of milk.
References
1. Gosling, S. N., Bryce, E. K., Dixon, P. G. etal. (2014). A glossary for biometeorology. IntJ Biometeorol 58, 277–308. https://doi.org/10.1007/s00484-013-0729-9.
2. Matthews, T. K., Wilby, R. L., & Murphy, C. (2017). Communicating the deadly consequences of global warming for human heat stress. Proceedings of the National Academy of Sciences of the United States of America, 114(15), 3861–3866. https://doi.org/10.1073/pnas.1617526114.
3. West, J. W. (2003). Effects of heat-stress on production in dairy cattle. J. DairySci. 86 (6), 2131–2144. https://doi.org/10.3168/jds.S0022-0302(03)73803-X
4. Morignat, E., Perrin, J. B., Gay, E., Vinard, J. L., Calavas, D., & Henaux, V. (2014). Assessment of the impact of the 2003 and 2006 heat waves on cattle mortality in France. PLoS One, 9(3), e93176.
5. Petrusha, Ye. Z., Dibirov, R. M. (2014). Produktyvnist i povedinka koriv za ekstremalnykh parametriv atmosfernoho povitria [Productivity and behavior of cows under extreme parameters of atmospheric air]. Tekhnolohiia vyrobnytstva i pererobky produktsiï tvarynnytstva, 2. 124–128. [in Ukrainian].
6. Boltyk, N. (2014). Vplyv teplovoho stresu na molochnu produktyvnist koriv. [The effect of heat stress on milk productivity of cows.] Naukovyi visnyk «Askaniia-Nova». 7. 72-76. [in Ukrainian].
7. Kravchenko Yu. S., Prusova H. L., Zolotarov A. P., Yeletska L. M., Tymchenko L. A. (2019). Temperatura navkolyshnoho seredovyshcha, yak faktor vplyvu na produktyvnist velykoi rohatoi khudoby. [Environment temperature as a factor of influence on the cattle’s productivity]. Naukovo-tekhnichnyi biuleten Instytutu tvarynnytstva NAAN – Scientific and Technical Bulletin of the Institute of Animal Science of the National Academy of Agrarian Science of Ukraine. Kharkiv, 121. 136–145. https://doi.org/10.32900/2312-8402-2019-121-136-146. [in Ukrainian].
8. Bernabucci, U., Lacetera, N., Baumgard, L. H., Rhoads, R. P., Ronchi, B., Nardone, A. (2010). Metabolic and hormonal acclimation to heat stress in domesticated ruminants. Animal, 4, 1167–1183. https://doi.org/10.1017/S175173111000090X.
9. Teoriia i praktyka normovanoi hodivli velykoi rohatoi khudoby: [Monohrafiia] [Theory and practice of rationed feeding of cattle] za red. V. M. Kandyby, I. I. Ibatullina, V. I. Kostenka. (2012). Zhytomyr: «Ruta». 860. [in Ukrainian].
10. Durst, L. (2003). Kormlenie sel'skokhozyajstvenny'kh zhivotny'kh [Feeding farm animals]. Vinnicza : Novaya kniga. [in Russian].
11. Podobed, L. I. (2012). Korma i kormlenie vy'sokoproduktivnogo molochnogoskota [Feed and feeding of high-performance dairy cattle]. Dnepropetrovsk: Art–Press [in Russian].
12. Kaufman, J. D., Kassube, K. R., & Ríus, A. G. Lowering rumen-degradable protein maintained energy-corrected milk yield and improved nitrogen-use efficiency in multiparous lactating dairy cows exposed to heat stress (2017). J. DairySci. 100 (10), 8132-8145. https://doi.org/10.3168/jds.2017-13026
13. Frigeri, K. D. M., Kachinski, K. D., Ghisi, N. d. C., Deniz, M., Damasceno, F. A., Barbari, M., Herbut, P., & Vieira, F. M. C. (2023). Effects of Heat Stress in Dairy Cows Raised in the Confined System: A Scientometric Review. Animals. 13(3):350. https://doi.org/10.3390/ani13030350.
14. Lepajy'e, L. K. (1981). Konversiya kormovogo proteina v pishchevoj belok [Feedprotein conversion to foodprotein]. Vestnik sel'skorhozyajstvennoy nauki – J. ofAgricultural Sci. 5, 85-90 [in Russian].
15. Plohinskij, N. A., (1969). Rukovodstvo po biometrii dlja zootehnikov [Biometrics Guide for Livestock Specialists], Moskva : Kolos, 155. [in Russian].
16. Ibatullina I. I. (Ed.), & Zhukorskoho O. M. (Ed.) (2017). Metodolohiia ta orhanizatsiia naukovykh doslidzhen u tvarynnytstvi: posibnyk [Methodology and organization of scientific research in animal husbandry]. Kyiv : Ahrar. nauka. 328. [in Ukrainian].
17. Bohdanov, H. O., Kandyba, V. M., Ibatullin, I. I., Melnychuk, D. O., Hetia, A. A. & Kostenko, O. I. (2012). Normy i ratsiony povnotsinnoi hodivli vysokoproduktyvnoi velykoi rohatoi khudoby: dovid.-posib. [Norms and rations of complete feeding of highly productive cattle]. Kyiv: Ahrarna nauka. 296. [in Ukrainian].
Rossokha V., PhD, sen. research, https://orcid.org/0000-0002-0978-9349
Boyko Yelena, PhD, sen. research, https://orcid.org/0000-0003-3065-046
Oliinychenko Y., PhD, https://orcid.org/0000-0002-1000-0683
Institute of Animal Science of NAAS
DOI https://doi.org/10.32900/2312-8402-2023-129-164-171
Keywords: gene, kappa-casein, cattle, Charolais, polymorphism, meat productivity.
Abstract
Much attention is paid to the study of kappa-casein gene polymorphism in dairy breeds of cattle. Moreover, there is a lack of research on kappa-casein polymorphism in cattle beef breeds. Knowing that different alleles of the kappa-casein gene have different effects on milk yield and milk protein content, it would be important to study the exact allele associations in Ukrainian Charolais cattle. In addition, it would be relevant to find out whether there is an effect of different alleles of the kappa-casein gene on growth parameters in offspring. In addition, the current study would be highly relevant due to no previous research of κ- Cn in Ukrainian Charolais cattle.
The polymorphism of the kappa-casein (κ-Cn) gene was studied in the population of Ukrainian Charolais cattle (n=29), "Privilla" agricultural company (Ukraine, Luhansk region) using the PCR-PDRF method. DNA was extracted from blood using the DNA Sorb isolation kit (AmplySens). Hind III restriction enzyme (FastDigest, Thermo Scientific) was used to see 2 allelic variants of κ-Cn polymorphism, which are A (273 bp) and B (182, 91 bp). The frequency of the A allele was 0.57±0.065 and 0.43±0.065 of the B allele. According to the genotyping results, allele frequency distribution in the population of 2021 did not reliably differ from the population of 2012. As a result, allele frequencies of the kappa-casein gene in 2012 for allele A was 0.61±0.054 and for B 0.39±0.054. This indicates the lack of selection pressure on population dynamics such as selective selection and gene drift over a period of 10 years.
The frequency of AA genotypes was equal to 0.31, of BB genotype to 0.17 and of AB to 0.52. It was found that the theoretically expected number of genotypes, calculated according to the Hardy-Weinberg principle, did not reliably differ from the actual number. It could be related to current alleles being within an equilibrium state.
In cattle with different genotypes of the κ-Cn gene, the values of the liveweight gain (kg) and the average daily gain (g) were calculated. In cattle with the BB genotype, there was an increase in the weight gain of their calves at weaning at 210 days (206.0±5.65 kg). In addition, the average daily gain of calves was 981.0±26.94 g, compared to genotypes AA (201.4±8.08 kg and 958.9±37.85 g, respectively) and AB – (196.8±2.45 kg and 936.9±11.73 g, respectively). Though, there were no significant differences between AA, BB and AB genotypes considering the studied parameters.
References
1. Yukalo, V. G. (2021). Biolohichna aktyvnist proteiniv i peptydiv moloka: monohrafiia [Biological activity of milk proteins and peptides: monograph]. Ternopil: named after Ivan Puliui, 372 [in Ukrainian].
2. Khaertdynov, R. A., Afanasev, M. P., & Khaertdynov, R. R. (2009). Belki moloka [Milk proteins]. Kazan, Ydel-Press, 256. [in Russian].
3. Martin, P., Bianchi, L., Cebo, C., & Miranda, G. (2013). Genetic polymorphism of milk proteins: Quantitative variability and molecular diversity. Advanced dairy chemistry. 387–429. https://doi.org/10.1007/978-1-4614-4714-6.
4. Dolmatova, Y. Y., & Valytov, F. R. (2015). Ocenka geneticheskogo potenciala krupnogo rogatogo skota po markernym genam [Evaluation of genetic efficiency of cattle by markers]. Bulletin of the Bashkir University. 20(3). 850–852. [in Russian].
5. Kostyunyna, O. V., Konovalova, E. N., Dolmatova, Y. Y., Rakyna, Y. A., & Gladіr E. A. (2013). Characteristics of the allele pool of Bashkir cattle populations according to CSN2 and CSN3 genes. Achievements of science and technology in the agricultural industry. Achievements of science and technology. 23. 64–67.
6. Pavlova, N. I., & Filippova, N. P. (2015). Polimorfizm genov molochnyh belkov u korov holmogorskoj porody v uslovijah Respubliki Saha (Jakutija) [Polymorphism of milk protein genes in cows of the Kholmogory breed under the conditions of the Republic of Sakha]. The potential of modern science. Vol. 4(12). P. 66–70. [in Russian].
7. Safina, N. Y., Yulmetyeva, Y. R., & Shakirov, S. K. (2018). Vlijanie kompleksa polimorfizma genov k-kazeina (CSN3) i prolaktina (PRL) na molochnuju produktivnost' korov-pervotjolok golshtinskoj porody [Effect of the k-casein (CSN3) and prolactin (PRL) gene polymorphism complex on the milk productivity of first-calf Holstein cows]. Dairy Bulletin. 1(29). 74–82. [in Russian].
8. Volkandari, S. D., Indriawati, I., & Margawati, E. T. (2017). Genetic polymorphism of kappa-casein gene in Friesian Holstein: a basic selection of dairy cattle superiority. Journal of the Indonesian Tropical Animal Agriculture. 42(4). 213–219. https://doi.org/10.14710/jitaa.42.4.213-219.
9. Miluchová, M., Gábor, M., Candrák, J., Trakovická, A., & Candráková, K. (2018). Association of HindIII-polymorphism in kappa-casein gene with milk, fat and protein yield in Holstein cattle. Acta Biochimica Polomica. 65(3). 403–407.
10. Podrechneva, Y. Y., Shhegolev, P. O., & Belokurov, S. G. (2020). Allel'nyj polimorfizm genov CSNZ i CSN2 u bykov-proizvoditelej molochnyh porod [Allelic polymorphism of the CSN3 and CSN2 genes in dairy bulls]. International research journal. 5(95). 109–113. https://doi.org/10.23670/IRJ.2020.95.5.019. [in Russian].
11. Khaertdinov, R. A., Kamaldinov, I. N., & Islamov, R. R. (2014). Geneticheskaja struktura po belkam moloka, u mjasnyh porod skota, razvodimyh v uslovijah Respubliki Tatarstan [Genetic structure of milk proteins in beef cattle bred in the conditions of the Republic of Tatarstan]. Scientific notes of the Kazan. 219. 319–324. [in Russian].
12. Trofymenko, O. L., Gil, M. I. (Ed.), & Smetana, O. Y. (2018). Genetika populjacіj: pіdruchnik [Genetics of populations: a textbook] Mykolaiv. Helvetica, 254 [in Ukrainian].
13. Kopylov, K. V., Metlytska, O. I., Mokhnachova, N. B., & Suprovych, T. M. (2016). Molecular genetic monitoring in the system of conservation of genetic resources of animals. Herald of Agrarian Science. 94(6). 43–47. https://doi.org/10.31073/agrovisnyk201606-09.
14. Rossoha, V. I., Shkavro, N. N., & Drobyazko O. V. (2014). Growth hormone and kappa-casein gene polymorphism study of the Charolais Cattle Breed. Competitiveness and quality of livestock products: materials of the XXI International Scientific and Practical Conference in Zhodino, RUE "Scientific and Practical Center of the National Academy of Sciences of Belarus for Animal Husbandry". 16. 146–153.
15. Lakin, G. F. (1990). Biometrija [Biometry]. Moskow: High education, 352. [in Russian].
16. Ozdemir, M., Kopuzlu, S., Topal, M., & Bilgin, O. C. (2018). Relationships between milk protein polymorphisms and production traits in cattle: a systematic review and meta-analysis. Animal Breeding. 61. 197–206. https://doi.org/10.5194/aab-61-197-(2018).
17. Neamt, R. I., Saplacan, G., Acatincai S., Cziszter L. T., Gavojdian D., & Ilie, D. E. (2016). The influence of CSN3 and LGB polymorphisms on milk production and chemical composition in Romanian Simmental cattle. Acta Biochimica Polonica. 64(3). 493–497. https://doi.org/10.18388/abp.(2016)_1454.
Pomitun I. A., doctor agricultural science, profesor,
https://orcid.org/0000-0002-7743-3600
Kosova N. O., Candidate of Agricultural Sciences, senior scientist,
https://orcid.org/0000-0001-7353-1994
Korkh I. V., Candidate of Agricultural Sciences, senior scientist,
https://orcid.org/0000-0002-8077-895X
Pankiv L. P., Candidate of Agricultural Sciences, senior scientist,
https://orcid.org/0000-0002-3295-2132
Boyko N. V., Candidate of Agricultural Sciences
https://orcid.org/0000-0001-6742-8456
Pomitun L.I., Researcher, https://orcid.org/0000-0001-5264-2898
Institute of Animal Science of NAAS
DOI https://doi.org/10.32900/2312-8402-2023-129-155-163
Keywords: selection, potential, variability, average daily growth, type of birth, inheritance.
Abstract
The research was conducted on young sheep of the Kharkiv internal breed type of the Prekos breed, born in 2020. in the conditions of the research farm of the Institute of Animal Science of the National Academy of Sciences "Gontarivka". The influence of different intensity and types of selection, as well as the level of feeding on the manifestation of this trait in animals of two generations was evaluated. It was established that the indicators of average daily growth of lambs from birth to weaning from their mothers vary widely - from 38 to 591 g per day. At the same time, the average daily growth of singleton lambs in the selected groups M-, Mo and M+ exceeded the indicators of twins by 27.0%, respectively; 17.7% and 12.9%.
In two adjacent generations (500 pairs of mothers and their daughters), the coefficient of inheritance of this trait was calculated. It turned out to be low, h2 = 0.046, and the dependence of the average daily growth of daughters on the value of this trait in their mothers, according to regression analysis, has the following form: Y=241.85+0.022X. Modeling of selection in the generation of mothers with regard to the influence on the average daily growth of animals of the daughter generation established that the difference between the offspring of mothers of classes M- and M+ is only 1.1% in favor of the latter, and their advantage over to selection, the variability of the trait in the compared groups of mothers narrowed to 13.1–18.8%, while in the corresponding groups of their daughters, this indicator was 27.2–34.1% and was close to the mean values for the sample. And although in terms of average daily gains before weaning, the parent rams exceeded the mother stock by 20.6% (p<0.001), the maximum of this trait was only 391 g/day, while the ewes exceeded 500 g/day.
According to the calculated average daily growth potential, daughters should exceed their mothers by 10.4%, while in fact their advantage was almost 22%. This testifies to the influence on the degree of realization of this trait primarily by a complex of paratypic factors, to a lesser extent by parents, which allows us to conclude that there is a need to increase the selection pressure among future breeder rams and stabilize the feeding when raising lambs at a higher level.
References
1. Tvarynnytstvo Ukrainy. 2020: statystychnyi zbirnyk. [Animal husbandry of Ukraine. 2020: statistical collection]. (2021). Kyiv: Derzhavna sluzhba statystyky Ukrainy, 59 [in Ukrainian].
2. Romanova, O. V., Pryima, S. V. (Ed.), & Basovskyi, D. M. (2022). Derzhavnyi reiestr subʼiektiv pleminnoi spravy u tvarynnytstvi za 2021 rik [State register of breeding subjects in animal husbandry for 2021]. (Vol. ІI). Kyiv. 192 [in Ukrainian].
3. Thorne, J. W., Murdoch, B. M., Freking, B. A., Redden, R. R., Murphy, T. W., Taylor, J. B., & Blackburn, H. D. (2021). Evolution of the sheep industry and genetic research in the United States: opportunities for convergence in the twenty-first century. Animal Genetics, 52, 4. 395–408. https://doi.org/10.1111/age.13067
4. Slavova, S., & Achkakanova, E. (2021). Study on some economic indicators, characterizing the production efficiency of raising Ile de France sheep. I. Comparative analysis of economic results in different production units. Bulgarian Journal of Agricultural Science, 27 (№ 5), 838-845.
5. Tomáš, J., Radek, F., & Martin, H. (2018). Evaluation of Growth Intensity in Suffolk and Charollais Sheep. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, 66(1): 61–67. https://doi:10.11118/actaun201866010061
6. Panayotov, D., Sevov, S. & Georgiev D. (2018). Live weight and intensity of growth of lambs from Lacaune breed raised in Bulgaria. Bulgarian Journal of Agricultural Science, 24 (Supplement 1). 8-94.
7. Olivier, W. J., Snyman, M. A.,. Olivier, J. J, van Wyk, J. B. & Erasmus G. J. (2001). Direct and correlated responses to selection for total weight of lamb weaned in Merino sheep. South African Journal of Animal Science 31(2). 115-121. Retrieved from: http://www.sasas.co.za/Sajas.html
8. Edianingsih, P., Amalia, D. (2018). Local sheep body weight selection response on various selection intensity in Purwakarta, West Java, Indonesia. Scientific Papers Series Management, Economic Engineering in Agriculture and Rural Development 18, 3. 115-122.
9. Gizaw, S., Getachew, T., Goshme, S., Valle-Zárate, A., van Arendonk, J. A. M., Kemp, S., Mwan, A. O., & Dessie, T. (2014). Efficiency of selection for body weight in a cooperative village breeding program of Menz sheep under smallholder farming system. Animal. 8(8):1249-1254. https://doi:10.1017/ S1751731113002024
10. Nezhlukchenko, T. I. (1998). Stupin realizatsii henetychnoho potentsialu avstraliiskykh me-rynosiv pry riznykh metodakh rozvedennia v tonkorunnomu vivcharstvi [The degree of realization of the genetic potential of Australian Merinos with different methods of breeding in fine-wool sheep breeding] Tavriiskyi naukovyi visnyk. 5(2). 45-46. [in Ukrainian].
11. Baranovskyi, D. Y., Khokhlov, A. M., & Hetmanets, O. M. (2017). Byometryia v selektsyy v MS Exel: uchebnoe posobye. [Biometrics in selection in MS Excel: textbook] Har'kov : FLP Brovyn A. V. 228 [in Russian].